
Lecture 14: Student Wellness & The Assembler CSE 390B, Autumn 2022

CSE 390B, Autumn 2022
Building Academic Success Through Bottom-Up Computing

Lecture 14: Student Wellness & The Assembler CSE 390B, Autumn 2022

Student Wellness & 
The Assembler

Stress and Student Wellness, Inside the Assembler, 
Compilers and The Software Stack, Hack CPU Logic Example



Lecture 14: Student Wellness & The Assembler CSE 390B, Autumn 2022

Lecture Outline

❖ Stress and Student Wellness
▪ Investing Time for Self-care and Well-being

❖ Inside the Assembler
▪ Assembler Motivations and Challenges
▪ Parsing, Symbols, Encoding

❖ Compilers and The Software Stack
▪ Steps for Compiling Software

❖ Hack CPU Logic Example: writeM
▪ Project 6 CPU Logic Exercise

2



Lecture 14: Student Wellness & The Assembler CSE 390B, Autumn 2022

Stress and Student Wellness

❖ Students are generally reporting increasing depression, 
anxiety, and suicidal thoughts
▪ The stress we feel from school can amplify these feelings

❖ A lack of self-care can hinder our academic performance 
as a student

❖ In a survey, over 80% of students felt that emotional or 
mental difficulties have hurt their academic performance 
(UW Healthy Minds Survey, 2017)

3



Lecture 14: Student Wellness & The Assembler CSE 390B, Autumn 2022

Stigma and Seeking Help

❖ Asking for help can be challenging and take humility

❖ However, seeking is an important step for self-care and 
helping us perform better academically

❖ 94% of UW students disagreed with the statement, “I 
would think less of someone who has received mental 
health treatment.” (UW Healthy Minds Survey, 2017)

4



Lecture 14: Student Wellness & The Assembler CSE 390B, Autumn 2022

Student Wellness Discussion

In groups, discuss the following questions:

❖ What is your typical response for when life circumstances 
becomes stressful?

❖ What are some strategies you can utilize for managing 
stress?

❖ What actionable steps can you take to foster your own 
well-being? What are some SMART goals you can set?

5



Lecture 14: Student Wellness & The Assembler CSE 390B, Autumn 2022

Strategies for Managing Stress

❖ Set aside time for leisure time to do something you enjoy 
(e.g., reading, knitting, gaming, completing a puzzle, etc.)

❖ Take care of your body by eating healthily, exercising 
regularly, getting enough sleep, etc.

❖ Write down all the things in your mind that is causing the 
stress you are experiencing

❖ Take the time to connect with people 1:1 or with a 
community and share about your life

6



Lecture 14: Student Wellness & The Assembler CSE 390B, Autumn 2022

Being There for One Another

❖ Promote a climate of care and inclusion among your 
peers in the UW and Allen School

❖ Look for warning signs (unusual moods, relationship 
dynamics, academic patterns, suicidal thoughts)

❖ Express concern for your peers and let them know that 
you are there for them

❖ Point them to resources for seeking additional help

7



Lecture 14: Student Wellness & The Assembler CSE 390B, Autumn 2022

Resources for Seeking Additional Help

❖ If depression, anxiety, or thoughts about suicide become 
a pattern, be proactive about reaching out for help

❖ Several resources available from both UW and within the 
Allen School

▪ UW resources include SAFECAMPUS, UW Counseling Center, etc.
▪ See the CSE 390B Resources page for more

8https://courses.cs.washington.edu/courses/cse390b/22au/resources.html

https://courses.cs.washington.edu/courses/cse390b/22au/resources.html


Lecture 14: Student Wellness & The Assembler CSE 390B, Autumn 2022

Lecture Outline

❖ Stress and Student Wellness
▪ Investing Time for Self-care and Well-being

❖ Inside the Assembler
▪ Assembler Motivations and Challenges
▪ Parsing, Symbols, Encoding

❖ Compilers and The Software Stack
▪ Steps for Compiling Software

❖ Hack CPU Logic Example: writeM
▪ Project 6 CPU Logic Exercise

9



Lecture 14: Student Wellness & The Assembler CSE 390B, Autumn 2022

Producing Machine Code

10

MEM CPU

REGISTERS

CONTROL

PROGRAM

DATA

0101110011100110
1011000101010100
1110001011111100
...

Machine Code Instructions

while (i < 100) 
{
sum += arr[i];
i++;

}
Java

movq $5, %rdx
addq %rsx, %rdx
movq %rdx, %rax
ret

Assembly Language

Load & Execute

Compile

Assemble



Lecture 14: Student Wellness & The Assembler CSE 390B, Autumn 2022

The Assembler’s Job

11

D=D+1
Assemble

1 1 1 0 1 1 1 1 1 0 1 0 0 0 0

D nullD+1

1  1  1 a  c  c  c  c  c  c d  d  d  j  j  j

Family:
0 = A-Instruction
1 = C-Instruction

Dest:
Where to store 
result

Jump:
Condition for 
jumping

Comp:
ALU Operation (a bit chooses 
between A and M)

Unused

0 v  v  v  v  v  v  v  v  v  v  v  v  v  v  v

Value:
A 15-bit unsigned value to load 
into A register



Lecture 14: Student Wellness & The Assembler CSE 390B, Autumn 2022

❖ Look up each value in the corresponding table

The Assembler’s Job

12

D=D+1
Assemble

1 1 1 0 1 1 1 1 1 0 1 0 0 0 0

D nullD+1



Lecture 14: Student Wellness & The Assembler CSE 390B, Autumn 2022

13

@12

D=A

@i

M=D  // init

(LOOP)

@R3

MD = M-1

@LOOP

D;JGT

Assemble

0000000000001100

1110110000010000

0000000000010000

1110001100001000

0000000000000011

1111110010011000

0000000000000100

1110001100000001

1

2

3

4

5

6

7

8

9

Line #

0

1

2

3

4

5

6

7

Address

Difficulties for the Assembler



Lecture 14: Student Wellness & The Assembler CSE 390B, Autumn 2022

Difficulties for the Assembler

❖ Three broad concerns:

14

Parsing
Recognizing type of each instruction and label, 
extracting relevant fields, skipping whitespace & 
comments

Symbols

Mapping from labels to instruction addresses, mapping 
from code symbols to RAM addresses, creating new 
symbols, corresponding line numbers to instruction 
addresses

Encoding Converting relevant fields to binary values, converting 
symbol values to binary values



Lecture 14: Student Wellness & The Assembler CSE 390B, Autumn 2022

Bells and Whistles… Why Bother?

❖ Tradeoff: Adding convenience for programmer makes it 
harder to build the Assembler
▪ E.g., removing symbols from Hack would make Assembler much 

simpler, still possible to write all the same programs
▪ But language would be far more annoying to use

15



Lecture 14: Student Wellness & The Assembler CSE 390B, Autumn 2022

Bells and Whistles… Why Bother?

❖ Tradeoff: Adding convenience for programmer makes it 
harder to build the Assembler
▪ E.g., removing symbols from Hack would make Assembler much 

simpler, still possible to write all the same programs
▪ But language would be far more annoying to use

❖ Don’t underestimate the importance of convenience
▪ Put another way: Adding these extra features makes 

programmers more productive

16



Lecture 14: Student Wellness & The Assembler CSE 390B, Autumn 2022

Parsing

❖ Source code is just a giant string: we need to go 
character-by-character to understand that string

❖ Parser presents iterator-like interface:
▪ To “advance” one instruction: 

• Move cursor forward, skipping whitespace and comments, until next 
non-empty line (ending on a newline)

▪ To “read” current instruction: 
• Throw away whitespace & comments
• Determine what type of instruction
• Pull relevant fields out

17



Lecture 14: Student Wellness & The Assembler CSE 390B, Autumn 2022

Symbols: Labels

❖ Keep symbol table, mapping symbols (strings) to their 
values (integers)
▪ Initialize with built-in symbols

18

SYMBOL VALUE

R0 0

R1 1

... ...

R15 15

SCREEN 16384

KBD 24576



Lecture 14: Student Wellness & The Assembler CSE 390B, Autumn 2022

Symbols: Labels

❖ Keep symbol table, mapping symbols (strings) to their 
values (integers)
▪ Initialize with built-in symbols

❖ Run through instructions, using this
pseudocode:

19

SYMBOL VALUE

R0 0

R1 1

... ...

R15 15

SCREEN 16384

KBD 24576

If current line is (LABEL):
Add LABEL → next line number to 
symbol table

If current line is @LABEL:
Lookup LABEL in symbol table, 
insert value into A instruction



Lecture 14: Student Wellness & The Assembler CSE 390B, Autumn 2022

Symbols: Labels

❖ Problem: what if a label’s use comes before its definition?

20

@LOOP

0;JMP

D=M

(LOOP)

@var

1

2

3

4

5

Line #



Lecture 14: Student Wellness & The Assembler CSE 390B, Autumn 2022

Symbols: Labels

❖ Problem: what if a label’s use comes before its definition?

❖ Solution: Two passes
▪ Pass 1: Populate symbol table by moving through file and ignoring 

anything that isn’t a (LABEL) line
▪ Pass 2: Go through file again, ignoring

(LABEL) lines, encoding C-instructions, and
encoding A-instructions according to
symbol table lookup

21

@LOOP

0;JMP

D=M

(LOOP)

@var

1

2

3

4

5

Line #



Lecture 14: Student Wellness & The Assembler CSE 390B, Autumn 2022

Lecture Outline

❖ Stress and Student Wellness
▪ Investing Time for Self-care and Well-being

❖ Inside the Assembler
▪ Assembler Motivations and Challenges
▪ Parsing, Symbols, Encoding

❖ Compilers and The Software Stack
▪ Steps for Compiling Software

❖ Hack CPU Logic Example: writeM
▪ Project 6 CPU Logic Exercise

22



Lecture 14: Student Wellness & The Assembler CSE 390B, Autumn 2022

Roadmap

23

High-Level 
Language

Intermediate 
Language(s)

Assembly 
Language

Machine Code

Operating 
System

Computer

CPUMemory

ALU

Basic Logic Gates

NAND

SOFTWARE

HARDWARE

PC



Lecture 14: Student Wellness & The Assembler CSE 390B, Autumn 2022

Roadmap

24

High-Level 
Language

Intermediate 
Language(s)

Assembly 
Language

Machine Code

Operating 
System

Computer

CPUMemory

ALU

Basic Logic Gates

NAND

SOFTWARE

HARDWARE

PC



Lecture 14: Student Wellness & The Assembler CSE 390B, Autumn 2022

Roadmap

25

High-Level 
Language

Intermediate 
Language(s)

Assembly 
Language

Machine Code

Operating 
System

Computer

CPUMemory

ALU

Basic Logic Gates

NAND

SOFTWARE

HARDWARE

PC

Assembler



Lecture 14: Student Wellness & The Assembler CSE 390B, Autumn 2022

Roadmap

26

High-Level 
Language

Intermediate 
Language(s)

Assembly 
Language

Machine Code

Operating 
System

Computer

CPUMemory

ALU

Basic Logic Gates

NAND

SOFTWARE

HARDWARE

PC

Assembler

Focus for the rest of 
the course



Lecture 14: Student Wellness & The Assembler CSE 390B, Autumn 2022

Software
Overview

x86, x86-64
ARM

RISC-V
HACK

Assembly 
Language

Machine Code

Windows
macOS

Unix/Linux
Android
Hack OS

Operating 
System

SOFTWARE
Assembler

Java Byte Code
Jack VM Code

Java
Python

C/C++
Jack

High-Level 
Language

Intermediate 
Language(s)

Compiler

Compiler

(VM Translator)



Lecture 14: Student Wellness & The Assembler CSE 390B, Autumn 2022

Software
Overview

x86, x86-64
ARM

RISC-V
HACK

Assembly 
Language

Machine Code

Windows
Mac

Unix/Linux
Android
Hack OS

Operating 
System

SOFTWARE
Assembler

Java Byte Code
Jack VM Code

Java
Python

C/C++
Jack

High-Level 
Language

Intermediate 
Language(s)

Compiler

Compiler

(VM Translator)
(Project 7)

Compiler



Lecture 14: Student Wellness & The Assembler CSE 390B, Autumn 2022

The Compiler: Goal

29

public int fact(int n) {
if (n == 0) {
return 1;

} else {
return n * fact(n - 1);

}
}

High-Level Language

(fact)
@R0
M=M+1
@R1
D=A
@ifbranch
D;JEQ

Assembly Language

Compiler



Lecture 14: Student Wellness & The Assembler CSE 390B, Autumn 2022

The Compiler: Goal

30

public int fact(int n) {
if (n == 0) {
return 1;

} else {
return n * fact(n - 1);

}
}

High-Level Language

(fact)
@R0
M=M+1
@R1
D=A
@ifbranch
D;JEQ

Assembly Language

Compiler

Theory Definition: a string, from the set 
of strings making up a language



Lecture 14: Student Wellness & The Assembler CSE 390B, Autumn 2022

The Compiler: Goal

31

public int fact(int n) {
if (n == 0) {
return 1;

} else {
return n * fact(n - 1);

}
}

High-Level Language

(fact)
@R0
M=M+1
@R1
D=A
@ifbranch
D;JEQ

Assembly Language

Compiler

Theory Definition: a string, from the set 
of strings making up a language

Practical Definition: a file containing a 
bunch of characters



Lecture 14: Student Wellness & The Assembler CSE 390B, Autumn 2022

The Compiler: Implementation

32

Scanner Parser Type 
Checker Optimizer Code 

Generator

Break string into 
discrete tokens:

etc.

IF (

==

ID(n)

NUM(0)

Verify the 
syntax tree is 
semantically 
correct

Rearrange the 
code to be 
more efficient 

Convert the syntax 
tree to the target 
language

Arrange tokens into 
syntax tree:

+

x 10

public int fact(int n) {
if (n == 0) {
return 1;

} else {
return n * fact(n - 1);

}
}

High-Level Language

(fact)
@R0
M=M+1
@R1
D=A
@ifbranch
D;JEQ

Assembly Language



Lecture 14: Student Wellness & The Assembler CSE 390B, Autumn 2022

Lecture Outline

❖ Stress and Student Wellness
▪ Investing Time for Self-care and Well-being

❖ Inside the Assembler
▪ Assembler Motivations and Challenges
▪ Parsing, Symbols, Encoding

❖ Compilers and The Software Stack
▪ Steps for Compiling Software

❖ Hack CPU Logic Example: writeM
▪ Project 6 CPU Logic Exercise

33



Lecture 14: Student Wellness & The Assembler CSE 390B, Autumn 2022

Hack CPU Logic Example: writeM

❖ Example: Determine when writeM should be set to 1

❖ Step 1: What do we pay attention to?
▪ writeM is related to whether we write to memory or not
▪ We need to look up the destination bits specification from 

Chapter 4

34



Lecture 14: Student Wellness & The Assembler CSE 390B, Autumn 2022

Hack CPU Logic Example: writeM

❖ Example: Determine when writeM should be set to 1

❖ Step 2: Determine logic for specification
▪ Read the “Destination Specification” section of Chapter 4
▪ Instruction bits:
1 1 1 a c1 c2 c3 c4 c5 c6 d1 d2 d3 j1 j2 j3

35



Lecture 14: Student Wellness & The Assembler CSE 390B, Autumn 2022

Hack CPU Logic Example: writeM

❖ Example: Determine when writeM should be set to 1

❖ Step 2: Determine logic for specification
▪ Read the “Destination Specification” section of Chapter 4
▪ Instruction bits:
1 1 1 a c1 c2 c3 c4 c5 c6 d1 d2 d3 j1 j2 j3

36



Lecture 14: Student Wellness & The Assembler CSE 390B, Autumn 2022

Hack CPU Logic Example: writeM

❖ Example: Determine when writeM should be set to 1

❖ Step 2: Determine logic for specification
▪ Read the “Destination Specification” section of Chapter 4
▪ Instruction bits:
1 1 1 a c1 c2 c3 c4 c5 c6 d1 d2 d3 j1 j2 j3

▪ d3 determines if the output should be written to memory
▪ Which bit of our instruction is that?
▪ So writeM = instruction[3]?

37



Lecture 14: Student Wellness & The Assembler CSE 390B, Autumn 2022

Hack CPU Logic Example: writeM

❖ Example: Determine when writeM should be set to 1

❖ What’s wrong with writeM = instruction[3]?
▪ What happens if we have an A-instruction?
▪ We only write to destinations in the case of a C-instruction
▪ So, writeM = C-instruction & instruction[3]
▪ Certain actions only occur on certain instruction types
▪ You may have to include a check for instruction type in your logic

38



Lecture 14: Student Wellness & The Assembler CSE 390B, Autumn 2022

Hack CPU Implementation: Logic Sub Chips

❖ We provide three sub chips and tests that implement the 
control logic for the A Register, D Register, and PC
▪ LoadAReg contains logic for loading the A Register
▪ LoadDReg contains logic for loading the D Register
▪ JumpLogic contains logic for determining if the PC should 

load, jump, or increment

❖ Implement and test these first, then use them in your CPU 
implementation
▪ Intended to help you narrow the scope of bugs

39



Lecture 14: Student Wellness & The Assembler CSE 390B, Autumn 2022

Lecture 13 Reminders

❖ Midterm will be graded by this Thursday (11/17)

❖ Please listen to episode one of the Feminist Survival 
Project podcast
▪ Be prepared to share one thing you learned this Thursday

❖ Project 6: Mock Exam Problem & Building a Computer 
due this Thursday (11/17) at 11:59pm

❖ Preston has office hours after class in CSE2 153
▪ Feel free to post your questions on the Ed board as well

40

https://www.feministsurvivalproject.com/episodes/episode-01-separate-the-stress-from-the-stressor

